Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Rapid restoration of access to essential goods and services has long been regarded as paramount for community recovery. Yet, there remains ambiguity in how access should be defined, measured, or operationalized. Defining accessibility as the ability to use available goods and services with a reasonable level of effort and cost requires evaluating it across six dimensions (proximity,availability,adequacy,acceptability,affordability, andawareness) while considering the perspective of both users and providers in the evaluation. But common distance-based metrics that focus solely on physical access and travel time often fall short of fully capturing these requirements, overlooking the user's perception. This paper introduces a new spatio-temporal accessibility metric that combines four out of these six dimensions, including proximity, acceptability, adequacy, and availability. The metric considers uncertainty in measuring each dimension and addresses both user and provider perspectives in measuring the acceptability and adequacy dimensions. The variation in the metric across the disaster timeline serves as a proxy for community recovery. The metric aligns with common engineering-oriented functionality-based resilience frameworks as the functionality level of the providers has been incorporated in its development. Operating at the household level, the metric determines the ratio of post-disruption access time to the intended good or service against its pre-disruption access time and yields a unitless ratio between zero and one, with zero expressing a total loss in accessibility and one signifying the same level of accessibility as pre-disruption. The proposed metric, while being scientifically principled, is a practical tool whose output is easily understood even by non-expert individuals. The metric is illustrated for schools and pharmacies using the Lumberton Testbed and data collected following the 2016 flood in Lumberton, North Carolina after Hurricane Matthew. Findings provide new insight into recovery plan prioritization and can be used to trigger protective actions. The paper concludes by discussing issues and barriers related to developing and validating accessibility metrics while highlighting areas for future research.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract The utilization of mass timber engineered wood products has increased for new buildings aiming to reduce environmental impacts. Whole-building life-cycle assessment (WBLCA) has been used to quantify the environmental impacts for a building’s lifespan. While mechanisms for calculating the cradle-to-grave impacts of a single building are well established, there are few examples of WBLCA applied for buildings in their first and second life that can be used to inform perspectives and pathways related to the circular economy and lead to informed decision making. This work presents a case study WBLCA to examine the effect of overlapping system boundaries and alternative end-of-life pathways for a building structure in its first and second life. This case study analyzed a ten-story mass timber shake-table specimen that was partially deconstructed and reused as a six-story shake-table building structure. Environmental impacts were analyzed in terms of global warming potential (GWP) calculated as the sum of fossil carbon, biogenic carbon, and avoided impacts. When examining reuse and landfill pathway alternatives using current standards and practices, results show that reusing material causes a positive GWP trend in the first system boundary and negative GWP trend in the second boundary. These results could indicate that it is not advantageous to reuse the ten-story building structure, running against principles of waste hierarchy, although the interpretation should be considered with caution. Future analyses could be improved by considering additional criteria such as demand on forest stocks, economic incentives, and even social impacts for a more complete representation of sustainability.more » « lessFree, publicly-accessible full text available January 1, 2026
-
The Natural Hazards Engineering Research Infrastructure (NHERI) Converging Design project is a collaborative effort between multiple universities and industry entities with the goal of creating a new design paradigm in structural engineering that employs multi-objective optimization to maximize functional recovery while integrating sustainability principles in the design process. The structural design approaches were validated through full-scale shake table testing of a 6-story mass timber structure at the at the Englekirk Structural Engineering Center at University of California, San Diego (NHERI@UCSD) Large High-Performance Outdoor Shake Table (LHPOST6) facility for eventual inclusion in a multi-objective design optimization framework. The shake table testing included three phases. Phase one consisted of a mass timber self-centering rocking wall (SCRW) system with U-shaped flexural plates (UFPs) in both building horizontal directions. Phase two replaced the SCRWs in one principal direction with SCRWs with buckling restrained boundary elements (BRBs) at the first story. Phase three replaced the newer walls from phase two with a resilient steel moment frame and concentric braced-frame (MF/CBF). The data shared includes reports summarizing the testing program, structural drawings, instrumentation setups, and raw data for the series of shake table tests performed during each phase. The data include building responses due to shake table motions simulating scaled historical ground motions and white noise (WN) tests.more » « less
-
Free, publicly-accessible full text available December 1, 2025
-
According to a new design paradigm called Converging Design, high-level optimization objectives such as resilience and sustainability can be pursued through iterative simulation and feedback. Unlike traditional design processes that prioritize desirable seismic performance at various seismic hazard levels, the Converging Design methodology also considers the long-term ecological impact of construction and functional recovery. This methodology requires navigating competing priorities, which can be pursued through multiobjective optimization (MOO). However, computational costs and incorporating uncertainty in seismic analysis also demand that optimization frameworks use algorithms and analysis resolutions that are appropriate to the decisions being made as the design is refined. While such a framework could be applied to any material, mass timber systems are increasingly attractive as a potential sustainable solution for buildings. In this study, using a Python-based object-oriented program, an automated structural design procedure is developed to evaluate the seismic and sustainability performance of parametrically definable mass timber building configurations. Different geometric classes with Cross-Laminated Timber Rocking Walls are modeled using OpenSees and are automatically designed. Their behavior is then studied to provide insights into the relationship between structural variables and the optimization objectives. The results show a clear trade-off between Seismic Safety (the inverse of risk) and Global Warming Potential due to the construction of different design options, although the nature of this trade-off depends on the desired seismic behavior limit states. The developed software thus enables designers to efficiently explore a range of early design options for mass timber lateral systems and to achieve optimal solutions that balance seismic and sustainability performance.more » « less
-
Numerical analyses can aid design exploration, but there are several computational approaches available to consider design options. These range from “brute-force” search to optimization. However, the implementation of optimization can be challenging for the complex, time-intensive analyses required to assess seismic performance. In response to this challenge, this study tests several optimization strategies for the direct displacement-based design of a lateral force-resisting system (LFRS) using mass timber panels with U-shaped flexural plates (UFPs) and post-tensioning high-strength steel rods. The study compares two approaches: (1) a brute-force sampling of designs and data filtering to determine acceptable solutions; and (2) various automated optimization algorithms. The differential evolution algorithm was found to be the most efficient and robust approach, saving 90% of computational cost compared to bruteforce sampling while producing comparable solutions. However, every optimization formulation did not return best range of design options, often requiring reformulation or hyperparameter tuning to ensure effectiveness.more » « less
-
To address functional recovery after earthquakes, there is growing interest in developing enhancedperformance seismic-resisting systems. Rocking walls, featuring a base gap-opening mechanism and designed to remain essentially elastic above the base, have demonstrated their potential in various construction materials, including mass timber. If combined with steel energy dissipators, the resulting hybrid steel-mass timber rocking walls have emerged as a promising seismic-resisting system. This study focuses on Post-Tensioned Mass Timber Rocking Walls supplemented with Buckling-Restrained Brace (BRB) boundary elements and builds upon findings from experimental programs funded by the National Science Foundation (NSF) and the United States Department of Agriculture (USDA). The rocking mechanism, controlled by the BRBs and the Post-Tensioned (PT) rods, provides self-centering behaviour, reducing the potential for residual drifts and improving post-earthquake repairability. An estimating method for higher-mode loading profiles is proposed and applied to a six-story archetype, which was tested at the Large High Performance Outdoor Shake Table (LHPOST) at the University of California San Diego (UCSD) in January 2024 as part of the NHERI Converging Design Project. The estimating method is practically formulated to facilitate the implementation in design procedures.more » « less
An official website of the United States government

Full Text Available